Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.153
Filtrar
1.
Sci Rep ; 12(1): 850, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039539

RESUMO

Immunity Related GTPases (IRG) are a family of proteins produced during infection that regulate membrane remodeling events in cells, particularly autophagy and mitophagy. The human IRGM gene has been strongly associated with Crohn's disease and other inflammatory diseases through Genome-Wide Association studies. Absence of Irgm1 in mice prompts intestinal inflammation, autoimmunity, and impaired immune control of pathogenic bacteria and protozoa. Although prior work has focused on a prominent role for IRGM/Irgm1 in regulating macrophage function, the work described here addresses a potential role of Irgm1 in regulating the function of mature T cells. Irgm1 was found to be highly expressed in T cells in a manner that varied with the particular T cell subset and increased with activation. Mice with a complete lack of Irgm1, or a conditional lack of Irgm1 specifically in T cells, displayed numerous changes in T cell numbers and function in all subsets examined, including CD4+ (Th1 and Treg) and CD8+ T cells. Related to changes in T cell number, apoptosis was found to be increased in Irgm1-deficient CD4+ and CD8+ T cells. Altered T cell metabolism appeared to be a key driver of the phenotypes: Glucose metabolism and glycolysis were increased in Irgm1-deficient CD4+ and CD8+ T cells, and muting these effects with glycolytic inhibitors partially restored T cell function and viability.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/fisiologia , Animais , Apoptose/genética , Autofagia/genética , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica/genética , Glucose/metabolismo , Glicólise , Ativação Linfocitária/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia
2.
Plant Physiol ; 188(2): 807-815, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791482

RESUMO

G-proteins are molecular on-off switches that are involved in transmitting a variety of extracellular signals to their intracellular targets. In animal and yeast systems, the switch property is encoded through nucleotides: a GDP-bound state is the "off-state" and the GTP-bound state is the "on-state". The G-protein cycle consists of the switch turning on through nucleotide exchange facilitated by a G-protein coupled receptor and the switch turning off through hydrolysis of GTP back to GDP, facilitated by a protein designated REGULATOR OF G SIGNALING 1 (RGS). In plants, G-protein signaling dramatically differs from that in animals and yeast. Despite stringent conservation of the nucleotide binding and catalytic structures over the 1.6 billion years that separate the evolution of plants and animals, genetic and biochemical data indicate that nucleotide exchange is less critical for this switch to operate in plants. Also, the loss of the single RGS protein in Arabidopsis (Arabidopsis thaliana) confers unexpectedly weaker phenotypes consistent with a diminished role for the G cycle, at least under static conditions. However, under dynamic conditions, genetic ablation of RGS in Arabidopsis results in a strong phenotype. We explore explanations to this conundrum by formulating a mathematical model that takes into account the accruing evidence for the indispensable role of phosphorylation in G-protein signaling in plants and that the G-protein cycle is needed to process dynamic signal inputs. We speculate that the plant G-protein cycle and its attendant components evolved to process dynamic signals through signaling modulation rather than through on-off, switch-like regulation of signaling. This so-called change detection may impart greater fitness for plants due to their sessility in a dynamic light, temperature, and pest environment.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Transdução de Sinais/genética , Arabidopsis/genética
3.
Theranostics ; 11(19): 9358-9375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646375

RESUMO

Rationale: Atherosclerosis plaque rupture (PR) is the pathological basis and chief culprit of most acute cardiovascular events and death. Given the complex and important role of macrophage apoptosis and autophagy in affecting plaque stability, an important unanswered question include is whether, and how, immunity-related GTPase family M protein (IRGM) and its mouse orthologue IRGM1 affect macrophage survival and atherosclerotic plaque stability. Methods: To investigate whether serum IRGM of ST-segment elevation myocardial infarction (STEMI) patients is related to plaque morphology, we divided 85 STEMI patients into those with and without plaque rupture (PR and non-PR, respectively) based on OCT image analysis, and quantified the patients' serum IRGM levels. Next, we engineered Irgm1 deficient mice (Irgm1+/-) and chimera mice with Irgm1 deficiency in the bone marrow on an ApoE-/- background, which were then fed a high-fat diet for 16 weeks. Pathological staining was used to detect necrotic plaque cores, ratios of neutral lipids and cholesterol crystal, as well as collagen fiber contents in these mice to characterize plaque stability. In addition, immunofluorescence, immunohistochemical staining and western blot were used to detect the apoptosis of macrophages in the plaques. In vitro, THP-1 and RAW264.7 cells were stimulated with ox-LDL to mimic the in vivo environment, and IRGM/IRGM1 expression were modified by specific siRNA (knockdown) or IRGM plasmid (knocked-in). The effect of IRGM/Irgm1 on autophagy and apoptosis of macrophages induced by ox-LDL was then evaluated. In addition, we introduced inhibitors of the JNK/p38/ERK signaling pathway to verify the specific mechanism by which Irgm1 regulates RAW264.7 cell apoptosis. Results: The serum IRGM levels of PR patients is significantly higher than that of non-PR patients and healthy volunteers, which may be an effective predictor of PR. On a high-fat diet, Irgm1-deficient mice exhibit reduced necrotic plaque cores, as well as neutral lipid and cholesterol crystal ratios, with increased collagen fiber content. Additionally, macrophage apoptosis is inhibited in the plaques of Irgm1-deficient mice. In vitro, IRGM/Irgm1 deficiency rapidly inhibits ox-LDL-induced macrophage autophagy while inhibiting ox-LDL-induced macrophage apoptosis in late stages. Additionally, IRGM/Irgm1 deficiency suppresses reactive oxygen species (ROS) production in macrophages, while removal of ROS effectively inhibits macrophage apoptosis induced by IRGM overexpression. We further show that Irgm1 can affect macrophage apoptosis by regulating JNK/p38/ERK phosphorylation in the MAPK signaling pathway. Conclusions: Serum IRGM may be related to the process of PR in STEMI patients, and IRGM/Irgm1 deficiency increases plaque stability. In addition, IRGM/Irgm1 deficiency suppresses macrophage apoptosis by inhibiting ROS generation and MAPK signaling transduction. Cumulatively, these results suggest that targeting IRGM may represent a new treatment strategy for the prevention and treatment of acute cardiovascular deaths caused by PR.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Placa Aterosclerótica/metabolismo , Idoso , Animais , Apolipoproteínas E/metabolismo , Apoptose/fisiologia , Aterosclerose/metabolismo , Autofagia/fisiologia , China , Modelos Animais de Doenças , Feminino , Proteínas de Ligação ao GTP/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Placa Aterosclerótica/fisiopatologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Células THP-1
4.
PLoS Comput Biol ; 17(9): e1009364, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591840

RESUMO

In behavioral learning, reward-related events are encoded into phasic dopamine (DA) signals in the brain. In particular, unexpected reward omission leads to a phasic decrease in DA (DA dip) in the striatum, which triggers long-term potentiation (LTP) in DA D2 receptor (D2R)-expressing spiny-projection neurons (D2 SPNs). While this LTP is required for reward discrimination, it is unclear how such a short DA-dip signal (0.5-2 s) is transferred through intracellular signaling to the coincidence detector, adenylate cyclase (AC). In the present study, we built a computational model of D2 signaling to determine conditions for the DA-dip detection. The DA dip can be detected only if the basal DA signal sufficiently inhibits AC, and the DA-dip signal sufficiently disinhibits AC. We found that those two requirements were simultaneously satisfied only if two key molecules, D2R and regulators of G protein signaling (RGS) were balanced within a certain range; this balance has indeed been observed in experimental studies. We also found that high level of RGS was required for the detection of a 0.5-s short DA dip, and the analytical solutions for these requirements confirmed their universality. The imbalance between D2R and RGS is associated with schizophrenia and DYT1 dystonia, both of which are accompanied by abnormal striatal LTP. Our simulations suggest that D2 SPNs in patients with schizophrenia and DYT1 dystonia cannot detect short DA dips. We finally discussed that such psychiatric and movement disorders can be understood in terms of the imbalance between D2R and RGS.


Assuntos
Dopamina/fisiologia , Modelos Neurológicos , Receptores de Dopamina D2/fisiologia , Adenilil Ciclases/fisiologia , Animais , Biologia Computacional , Corpo Estriado/fisiologia , Distonia Muscular Deformante/fisiopatologia , Proteínas de Ligação ao GTP/fisiologia , Humanos , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Transtornos Mentais/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Neurônios/fisiologia , Recompensa , Esquizofrenia/fisiopatologia , Transdução de Sinais/fisiologia
5.
Infect Immun ; 89(11): e0020221, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34338548

RESUMO

Gamma interferon (IFN-γ)-induced immunity-related GTPases (IRGs) confer cell-autonomous immunity to the intracellular protozoan pathogen Toxoplasma gondii. Effector IRGs are loaded onto the Toxoplasma-containing parasitophorous vacuole (PV), where they recruit ubiquitin ligases, ubiquitin-binding proteins, and IFN-γ-inducible guanylate-binding proteins (Gbps), prompting PV lysis and parasite destruction. Host cells lacking the regulatory IRGs Irgm1 and Irgm3 fail to load effector IRGs, ubiquitin, and Gbps onto the PV and are consequently defective for cell-autonomous immunity to Toxoplasma. However, the role of the third regulatory IRG, Irgm2, in cell-autonomous immunity to Toxoplasma has remained unexplored. Here, we report that Irgm2 unexpectedly plays a limited role in the targeting of effector IRGs, ubiquitin, and Gbps to the Toxoplasma PV. Instead, Irgm2 is instrumental in the decoration of PVs with γ-aminobutyric acid receptor-associated protein-like 2 (GabarapL2). Cells lacking Irgm2 are as defective for cell-autonomous host defense to Toxoplasma as pan-Irgm-/- cells lacking all three Irgm proteins, and Irgm2-/- mice succumb to Toxoplasma infections as readily as pan-Irgm-/- mice. These findings demonstrate that, relative to Irgm1 and Irgm3, Irgm2 plays a distinct but critically important role in host resistance to Toxoplasma.


Assuntos
GTP Fosfo-Hidrolases/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Toxoplasmose/imunologia , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/fisiologia , Ubiquitina/fisiologia , Vacúolos/fisiologia
6.
Biol Open ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34369554

RESUMO

Arf GTPase-Activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors (Arfs), which are critical to form transport intermediates. ArfGAPs have been thought to be negative regulators of Arfs; however, accumulating evidence indicates that ArfGAPs are important for cargo sorting and promote membrane traffic. Weibel-Palade bodies (WPBs) are cigar-shaped secretory granules in endothelial cells that contain von Willebrand factor (vWF) as their main cargo. WPB biogenesis at the Golgi was reported to be regulated by Arf and their regulators, but the role of ArfGAPs has been unknown. In this study, we performed siRNA screening of ArfGAPs to investigate the role of ArfGAPs in the biogenesis of WPBs. We found two ArfGAPs, SMAP1 and AGFG2, to be involved in WPB size and vWF exocytosis, respectively. SMAP1 depletion resulted in small-sized WPBs, and the lysosomal inhibitor leupeptin recovered the size of WPBs. The results indicate that SMAP1 functions in preventing the degradation of cigar-shaped WPBs. On the other hand, AGFG2 downregulation resulted in the inhibition of vWF secretion upon Phorbol 12-myristate 13-acetate (PMA) or histamine stimulation, suggesting that AGFG2 plays a role in vWF exocytosis. Our study revealed unexpected roles of ArfGAPs in vWF transport.


Assuntos
Exocitose/genética , Proteínas de Ligação ao GTP/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Proteínas de Membrana/fisiologia , Corpos de Weibel-Palade/fisiologia , Fator de von Willebrand/fisiologia , Humanos , Transporte Proteico/genética
7.
Commun Biol ; 4(1): 635, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045638

RESUMO

G protein-coupled receptors (GPCRs) selectively couple to specific heterotrimeric G proteins comprised of four subfamilies in order to induce appropriate physiological responses. However, structural determinants in Gα subunits responsible for selective recognition by approximately 800 human GPCRs have remained elusive. Here, we directly compare the influence of subtype-specific Gα structures on the stability of GPCR-G protein complexes and the activation by two Gq-coupled receptors. We used FRET-assays designed to distinguish multiple Go and Gq-based Gα chimeras in their ability to be selectively bound and activated by muscarinic M3 and histaminic H1 receptors. We identify the N-terminus including the αN/ß1-hinge, the ß2/ß3-loop and the α5 helix of Gα to be key selectivity determinants which differ in their impact on selective binding to GPCRs and subsequent activation depending on the specific receptor. Altogether, these findings provide new insights into the molecular basis of G protein-coupling selectivity even beyond the Gα C-terminus.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Animais , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/ultraestrutura , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Camundongos , Ligação Proteica , Ratos , Receptores Acoplados a Proteínas G/fisiologia , Receptores Acoplados a Proteínas G/ultraestrutura , Transdução de Sinais
8.
Pharmacol Ther ; 223: 107818, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33600853

RESUMO

Asthma is a highly prevalent disorder characterized by chronic lung inflammation and reversible airways obstruction. Pathophysiological features of asthma include episodic and reversible airway narrowing due to increased bronchial smooth muscle shortening in response to external and host-derived mediators, excessive mucus secretion into the airway lumen, and airway remodeling. The aberrant airway smooth muscle (ASM) phenotype observed in asthma manifests as increased sensitivity to contractile mediators (EC50) and an increase in the magnitude of contraction (Emax); collectively these attributes have been termed "airways hyper-responsiveness" (AHR). This defining feature of asthma can be promoted by environmental factors including airborne allergens, viruses, and air pollution and other irritants. AHR reduces airway caliber and obstructs airflow, evoking clinical symptoms such as cough, wheezing and shortness of breath. G-protein-coupled receptors (GPCRs) have a central function in asthma through their impact on ASM and airway inflammation. Many but not all treatments for asthma target GPCRs mediating ASM contraction or relaxation. Here we discuss the roles of specific GPCRs, G proteins, and their associated signaling pathways, in asthma, with an emphasis on endogenous mechanisms of GPCR regulation of ASM tone and lung inflammation including regulators of G-protein signaling (RGS) proteins, G-protein coupled receptor kinases (GRKs), and ß-arrestin.


Assuntos
Asma , Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Transdução de Sinais , Asma/metabolismo , Quinases de Receptores Acoplados a Proteína G/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Humanos , Proteínas RGS/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , beta-Arrestinas/fisiologia
9.
Eur J Endocrinol ; 184(2): R41-R49, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33112278

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and major drug targets. They play a fundamental role in the endocrine system, where they mediate the effects of several hormones and neurotransmitters. As a result, alterations of GPCR signalling are a major cause of endocrine disorders such as congenital hypothyroidism or Cushing's syndrome. My group develops innovative optical methods such as fluorescence resonance energy transfer (FRET) and single-molecule microscopy, which allow us to investigate GPCR signalling in living cells with unprecedented spatiotemporal resolution. Using this innovative approach, we have contributed to elucidate some long-debated questions about the mechanisms of GPCR signalling and their involvement in human disease. Among other findings, these studies have led to the unexpected discovery that GPCRs are not only signalling at the cell surface, as previously assumed, but also at various intracellular sites. This has important implications to understand how hormones and neurotransmitters produce specific responses in our cells and might pave the way to innovative treatments for common diseases like diabetes or heart failure.


Assuntos
Receptores Acoplados a Proteínas G/fisiologia , Animais , Distinções e Prêmios , Endocrinologia/organização & administração , Endocrinologia/normas , Endocrinologia/tendências , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , História do Século XXI , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Fatores de Tempo , Distribuição Tecidual
10.
Hypertension ; 77(1): 216-227, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249864

RESUMO

Transglutaminase 2 (TG2) is an enzyme which in the open conformation exerts transamidase activity, leading to protein cross-linking and fibrosis. In the closed conformation, TG2 participates in transmembrane signaling as a G protein. The unspecific transglutaminase inhibitor cystamine causes vasorelaxation in rat resistance arteries. However, the role of TG2 conformation in vascular function is unknown. We investigated the vascular effects of selective TG2 inhibitors by myography in isolated rat mesenteric and human subcutaneous resistance arteries, patch-clamp studies on vascular smooth muscle cells, and blood pressure measurements in rats and mice. LDN 27219 promoted the closed TG2 conformation and inhibited transamidase activity in mesenteric arteries. In contrast to TG2 inhibitors promoting the open conformation (Z-DON, VA5), LDN 27219 concentration-dependently relaxed rat and resistance human arteries by a mechanism dependent on nitric oxide, large-conductance calcium-activated and voltage-gated potassium channels 7, lowering blood pressure. LDN 27219 also potentiated acetylcholine-induced relaxation by opening potassium channels in the smooth muscle; these effects were abolished by membrane-permeable TG2 inhibitors promoting the open conformation. In isolated arteries from 35- to 40-week-old rats, transamidase activity was increased, and LDN 27219 improved acetylcholine-induced relaxation more than in younger rats. Infusion of LDN 27219 decreased blood pressure more effectively in 35- to 40-week than 12- to 14-week-old anesthetized rats. In summary, pharmacological modulation of TG2 to the closed conformation age-dependently lowers blood pressure and, by opening potassium channels, potentiates endothelium-dependent vasorelaxation. Our findings suggest that promoting the closed conformation of TG2 is a potential strategy to treat age-related vascular dysfunction and lowers blood pressure.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular/fisiologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Transglutaminases/antagonistas & inibidores , Vasodilatação/efeitos dos fármacos , Fatores Etários , Animais , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Óxido Nítrico/fisiologia , Conformação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos , Ratos Wistar , Transglutaminases/química , Transglutaminases/fisiologia , Resistência Vascular
11.
Biochemistry (Mosc) ; 85(10): 1159-1168, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33202201

RESUMO

Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated in vivo involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.


Assuntos
Autofagia , Proteínas de Ligação ao GTP/fisiologia , Células-Tronco Hematopoéticas , Transglutaminases/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase
12.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33004692

RESUMO

Posttranslational glutamylation/deglutamylation balance in tubulins influences dendritic maturation and neuronal survival of cerebellar Purkinje neurons (PNs). PNs and some additional neuronal types degenerate in several spontaneous, independently occurring Purkinje cell degeneration (pcd) mice featuring mutant neuronal nuclear protein induced by axotomy (Nna1), a deglutamylase gene. This defective deglutamylase allows glutamylases to form hyperglutamylated tubulins. In pcd, all PNs die during postnatal "adolescence." Neurons in some additional brain regions also die, mostly later than PNs. We show in laser capture microdissected single PNs, in cerebellar granule cell neuronal clusters, and in dissected hippocampus and substantia nigra that deglutamase mRNA and protein were virtually absent before pcd PNs degenerated, whereas glutaminase mRNA and protein remained normal. Hyperglutamylated microtubules and dimeric tubulins accumulated in pcd PNs and were involved in pcd PN death by glutamylase/deglutamylase imbalance. Importantly, treatment with a microtubule depolymerizer corrected the glutamylation/deglutamylation ratio, increasing PN survival. Further, before onset of neuronal death, pcd PNs displayed prominent basal polylisosomal masses rich in ER. We propose a "seesaw" metamorphic model summarizing mutant Nna1-induced tubulin hyperglutamylation, the pcd's PN phenotype, and report that the neuronal disorder involved ER stress, unfolded protein response, and protein synthesis inhibition preceding PN death by apoptosis/necroptosis.


Assuntos
Apoptose , Retículo Endoplasmático/patologia , Proteínas de Ligação ao GTP/fisiologia , Glutamina/química , Neurônios/patologia , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Tubulina (Proteína)/química , Animais , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Neurônios/metabolismo , Peptídeo Sintases , Fenótipo , Células de Purkinje/metabolismo
13.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987815

RESUMO

ROP (Rho-like GTPases from plants) GTPases are polarly localized key regulators of polar growth in pollen tubes and other cells in plants. However, how ROP GTPases are regulated and how they control polar growth remains to be fully understood. To gain new insights into ROP-dependent mechanisms underlying polar cell growth, we characterized the interactome of ROP1 GTPase that controls Arabidopsis pollen tube (PT) tip growth, an extreme form of polar cell growth. We established an efficient method for culturing Arabidopsis pollen tubes in liquid medium, which was used for immunoprecipitation/mass spectrometry-based identification of ROP1-associated proteins. A total of 654 candidates were isolated from the ROP1 interactome in Arabidopsis pollen tubes, and GO (Gene Ontology) classification and pathway analysis revealed multiple uncharacterized ROP1-dependent processes including translation, cell wall modification, post transcriptional modification, and ion homeostasis, in addition to known ROP1-dependent pathways. The ROP1-interactome data was further supported by the co-expression of the candidate interactors in highly mature pollen with PT germination and growth defects being discovered in 25% (8/32) of the candidate mutant genes. Taken together, our work uncovers valuable information for the identification and functional elucidation of ROP-associated proteins in the regulation of polar growth, and provides a reliable reference to identify critical regulators of polar cell growth in the future.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Tubo Polínico/fisiologia , Regulação da Expressão Gênica de Plantas , Germinação , Proteoma/fisiologia , Transdução de Sinais , Técnicas de Cultura de Tecidos
14.
Nat Cell Biol ; 22(8): 973-985, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32753672

RESUMO

Autophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB. An mAtg8 partner of IRGM, GABARAP, interacted with TFEB. Deletion of all mAtg8s or GABARAPs affected the global transcriptional response to starvation and downregulated subsets of TFEB targets. IRGM and GABARAPs countered the action of mTOR as a negative regulator of TFEB. This was suppressed by constitutively active RagB, an activator of mTOR. Infection of macrophages with the membrane-permeabilizing microbe Mycobacterium tuberculosis or infection of target cells by HIV elicited TFEB activation in an IRGM-dependent manner. Thus, IRGM and its interactors mAtg8s close a loop between the autophagosomal pathway and the control of lysosomal biogenesis by TFEB, thus ensuring coordinated activation of the two systems that eventually merge during autophagy.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/fisiologia , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Calcineurina/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/fisiologia , Transporte Proteico , Proteínas Qa-SNARE/metabolismo
15.
Mol Biol Cell ; 31(21): 2331-2347, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755438

RESUMO

Mitochondria are maternally inherited in many organisms. Mitochondrial morphology and activity regulation is essential for cell survival, differentiation, and migration. An analysis of mitochondrial dynamics and function in morphogenetic events in early metazoan embryogenesis has not been carried out. In our study we find a crucial role of mitochondrial morphology regulation in cell formation in Drosophila embryogenesis. We find that mitochondria are small and fragmented and translocate apically on microtubules and distribute progressively along the cell length during cellularization. Embryos mutant for the mitochondrial fission protein, Drp1 (dynamin-related protein 1), die in embryogenesis and show an accumulation of clustered mitochondria on the basal side in cellularization. Additionally, Drp1 mutant embryos contain lower levels of reactive oxygen species (ROS). ROS depletion was previously shown to decrease myosin II activity. Drp1 loss also leads to myosin II depletion at the membrane furrow, thereby resulting in decreased cell height and larger contractile ring area in cellularization similar to that in myosin II mutants. The mitochondrial morphology and cellularization defects in Drp1 mutants are suppressed by reducing mitochondrial fusion and increasing cytoplasmic ROS in superoxide dismutase mutants. Our data show a key role for mitochondrial morphology and activity in supporting the morphogenetic events that drive cellularization in Drosophila embryos.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Drosophila melanogaster/ultraestrutura , Proteínas de Ligação ao GTP/fisiologia , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Morfogênese , Animais , Proteínas do Citoesqueleto/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Mitocôndrias/fisiologia , Miosina Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Inflamm Res ; 69(9): 925-935, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32500186

RESUMO

OBJECTIVE AND DESIGN: Celiac disease (CD) is an intestinal inflammatory disorder of the small intestine. Gliadins are a component of gluten and there are three main types (α, γ, and ω). Recent studies indicate that gliadin peptides are able to activate an innate immune response. IL15 is a major mediator of the innate immune response and is involved in the early alteration of CD mucosa. The chitinase molecules are highly expressed by the innate immune cells during the inflammatory processes. MATERIAL OR SUBJECTS: We analyzed several microarray datasets of PBMCs and duodenum biopsies of CD patients and healthy control subjects (HCs). We verified the modulation CHI3L1 in CD patients and correlated the expression levels to the IL15, IL15Rα, TGM2, IFNγ, and IFNGR1/2. Duodenal biopsy samples belonged to nine active and nine treated children patients (long-term effects of gliadin), and 17 adult CD patients and 10 adults HCs. We also selected 169 samples of PBMCs from 127 CD patients on adherence to a gluten-free diet (GFD) for at least 2 years and 44 HCs. RESULTS: Our analysis showed that CHI3L1 and IL15Rα were significantly upregulated in adult and children's celiac duodenum biopsies. In addition, the two genes were correlated significantly both in children than in adults CD duodenum biopsies. No significant modulation was observed in PBMCs of adult CD patients compared to the HCs. The correlation analysis of the expression levels of CHI3L1 and IL15Rα compared to TGM showed significant values both in adults and in children duodenal biopsies. Furthermore, the IFNγ expression levels were positively correlated with CHI3L1 and IL15Rα. Receiver operating characteristic (ROC) analysis confirmed the diagnostic ability of CHI3L1 and IL15Rα to discriminate CD from HCs. CONCLUSION: Our data suggest a role for CHI3L1 underlying the pathophysiology of CD and represent a starting point aiming to inspire new investigation that proves the possible use of CHI3L1 as a diagnostic factor and therapeutic target.


Assuntos
Doença Celíaca/imunologia , Proteína 1 Semelhante à Quitinase-3/fisiologia , Duodeno/imunologia , Proteínas de Ligação ao GTP/fisiologia , Subunidade alfa de Receptor de Interleucina-15/fisiologia , Transglutaminases/fisiologia , Adulto , Biópsia , Doença Celíaca/etiologia , Criança , Proteína 1 Semelhante à Quitinase-3/análise , Proteína 1 Semelhante à Quitinase-3/genética , Duodeno/enzimologia , Duodeno/patologia , Humanos , Subunidade alfa de Receptor de Interleucina-15/análise , Subunidade alfa de Receptor de Interleucina-15/genética , Proteína 2 Glutamina gama-Glutamiltransferase
17.
Curr Biol ; 30(14): 2860-2868.e3, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32470363

RESUMO

Branching morphogenesis is a widely used mechanism for development [1, 2]. In plants, it is initiated by the emergence of a new growth axis, which is of particular importance for plants to explore space and access resources [1]. Branches can emerge either from a single cell or from a group of cells [3-5]. In both cases, the mother cells that initiate branching must undergo dynamic morphological changes and/or adopt oriented asymmetric cell divisions (ACDs) to establish the new growth direction. However, the underlying mechanisms are not fully understood. Here, using the bryophyte moss Physcomitrella patens as a model, we show that side-branch formation in P. patens protonemata requires coordinated polarized cell expansion, directional nuclear migration, and orientated ACD. By combining pharmacological experiments, long-term time-lapse imaging, and genetic analyses, we demonstrate that Rho of plants (ROP) GTPases and actin are essential for cell polarization and local cell expansion (bulging). The growing bulge acts as a prerequisite signal to guide long-distance microtubule (MT)-dependent nuclear migration, which determines the asymmetric positioning of the division plane. MTs play an essential role in nuclear migration but are less involved in bulge formation. Hence, cell polarity and cytoskeletal elements act cooperatively to modulate cell morphology and nuclear positioning during branch initiation. We propose that polarity-triggered nuclear positioning and ACD comprise a fundamental mechanism for increasing multicellularity and tissue complexity during plant morphogenesis.


Assuntos
Actinas/fisiologia , Divisão Celular Assimétrica/genética , Divisão Celular Assimétrica/fisiologia , Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , GTP Fosfo-Hidrolases/fisiologia , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Bryopsida/citologia , Núcleo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Microtúbulos/metabolismo
18.
Int Immunopharmacol ; 84: 106515, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32311672

RESUMO

Immunity-related GTPase family M1 protein (lRGM1) plays an important role in host resistance to infection, immune inflammation, and tumors, and it is expressed in various tissues and cells, including the central nervous system, cardiovascular system, bone marrow-derived cells, glioma, and melanoma. However, the effect of IRGM1 in the muscles has not been reported to date. In this study, Irgm1-/- mice were used to evaluate the effect of lrgm1 on regeneration after skeletal muscle injury. The tibialis anterior muscle in Irgm1-/- mice was poorly repaired after BaCl2-induced injury, whereas lrgm1 knockout itself had no significant effect on the differentiation of myoblasts. However, the microenvironment of Irgm1-/- mice with a high interferon-gamma level inhibited the differentiation of myoblasts in vivo. These results suggest that lrgm1 knockout indirectly inhibits skeletal muscle regeneration after injury, providing new insights into the biological function of IRGM1.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Músculo Esquelético/fisiologia , Animais , Compostos de Bário , Diferenciação Celular , Células Cultivadas , Cloretos , Proteínas de Ligação ao GTP/genética , Interferon gama/fisiologia , Masculino , Camundongos Knockout , Músculo Esquelético/lesões , Regeneração , Células Satélites de Músculo Esquelético/fisiologia
19.
Proc Natl Acad Sci U S A ; 116(47): 23760-23771, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31676548

RESUMO

Elimination of dysfunctional mitochondria via mitophagy is essential for cell survival and neuronal functions. But, how impaired mitophagy participates in tissue-specific vulnerability in the brain remains unclear. Here, we find that striatal-enriched protein, Rhes, is a critical regulator of mitophagy and striatal vulnerability in brain. In vivo interactome and density fractionation reveal that Rhes coimmunoprecipitates and cosediments with mitochondrial and lysosomal proteins. Live-cell imaging of cultured striatal neuronal cell line shows Rhes surrounds globular mitochondria, recruits lysosomes, and ultimately degrades mitochondria. In the presence of 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, Rhes disrupts mitochondrial membrane potential (ΔΨ m ) and promotes excessive mitophagy and cell death. Ultrastructural analysis reveals that systemic injection of 3-NP in mice promotes globular mitochondria, accumulation of mitophagosomes, and striatal lesion only in the wild-type (WT), but not in the Rhes knockout (KO), striatum, suggesting that Rhes is critical for mitophagy and neuronal death in vivo. Mechanistically, Rhes requires Nix (BNIP3L), a known receptor of mitophagy, to disrupt ΔΨ m and promote mitophagy and cell death. Rhes interacts with Nix via SUMO E3-ligase domain, and Nix depletion totally abrogates Rhes-mediated mitophagy and cell death in the cultured striatal neuronal cell line. Finally, we find that Rhes, which travels from cell to cell via tunneling nanotube (TNT)-like cellular protrusions, interacts with dysfunctional mitochondria in the neighboring cell in a Nix-dependent manner. Collectively, Rhes is a major regulator of mitophagy via Nix, which may determine striatal vulnerability in the brain.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Animais , Linhagem Celular , Corpo Estriado/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Nitrocompostos/farmacologia , Propionatos/farmacologia
20.
PLoS Comput Biol ; 15(10): e1007193, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589600

RESUMO

Guanylate binding proteins (GBPs) belong to the dynamin-related superfamily and exhibit various functions in the fight against infections. The functions of the human guanylate binding protein 1 (hGBP1) are tightly coupled to GTP hydrolysis and dimerization. Despite known crystal structures of the hGBP1 monomer and GTPase domain dimer, little is known about the dynamics of hGBP1. To gain a mechanistic understanding of hGBP1, we performed sub-millisecond multi-resolution molecular dynamics simulations of both the hGBP1 monomer and dimer. We found that hGBP1 is a highly flexible protein that undergoes a hinge motion similar to the movements observed for other dynamin-like proteins. Another large-scale motion was observed for the C-terminal helix α13, providing a molecular view for the α13-α13 distances previously reported for the hGBP1 dimer. Most of the loops of the GTPase domain were found to be flexible, revealing why GTP binding is needed for hGBP1 dimerization to occur.


Assuntos
Biologia Computacional/métodos , Proteínas de Ligação ao GTP/fisiologia , Algoritmos , Sítios de Ligação , Simulação por Computador , Dimerização , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Movimento (Física) , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...